Leaders in pump innovation

Company Brochure

We are proudly:

Contents

	Page
Company Profile	1
Vertical Industrial Turbine Pumps	6
CNE Vertical Mixed Flow Pumps	11
Split Casing Pumps	20
Single Stage Split Casing Pumps	26
Two Stage Split Casing Pumps	31
End Suction Pumps	35
Multi-Stage High Pressure Pumps	40
High Head Multi-Stage Pumps	43
General Information	47
Company Details	56

*All information contained in this brochure is subject to change without prior notice. E & OE.

Company Profile

APE Pumps benefits from a long historical legacy of leadership and innovation in the pump engineering industry.

With 70 years behind us, the vision of our founders and our history represent an incredible foundation for our company, an underpinning which gives us confidence, strength an insight as we continue to be a leader in the growing premium pump engineering industry.

APE Pumps has an innovative, cutting edge products already being hailed as the best in its class. With an experienced, close-knit team of engineers, business people and specialists, we have the expertise to meet shifting market demands.

Through our highly flexible and ultramodern production facilities, we have developed unique skills which are manifested in the design and manufacture of pumps specially engineered to suit all conditions. We have the internationally recognised ISO 9001.2015 accreditation which includes a complete calibration and various test facilities to cover all aspects of our manufacturing processes.

APE Pumps and spares are being supplied to many institutions and industries including:

- Municipalities
- Mining
- Pulp and Paper
- Mineral Benefactions
- Ports and Harbours
- Water Authorities
- Consulting Firms
- Power Generation
- Petrochemical Industries

In every aspect of our business, we are now able to respond even faster than ever before to changing client's needs. This is true not only for our consulting expertise, orders processing and delivery levels, but also for after sales service including maintenance, repairs and spare parts supply. In addition, we have carved a niche for ourselves with customer orientated documentation, professional software and individually designed training courses.

By offering service levels that are unprecedented in the marketplace, we have made a total commitment to remaining a top company in all areas of our operation.

Turnkey Solutions:

- In-house Service and Repair Facility
- On Site Installation
- Service Training
- Service Level Agreement
- 8 ME Contractor
- Design, Supply, Manufacture, Installation, Commissioning and Alignment

70 Years of Serving the Pump Industry

APE Pumps Group Benchmarks

Vertical Industrial Turbine Pumps

Applications

The pumps can be used in any industrial or agricultural application.

They can be used in:

- Steel Works
- Chemical Process Plant
- Effluent Disposal
- Cooling Water Circulation
- Irrigation
- Water Works and Raw Water Supply
- Shaft Sinking and Dewatering
- Pipeline Booster and Transfer Service
- Condensate Extraction

Features

- 1. Civil work is easier and cheaper.
- 2. Installation is easier.
- 3. There is no suction valve with consequent cost and pressure loss savings.
- 4. Efficiencies are as good as any.
- 5. NPSH problems are eliminated.
- Space is saved and by using weather proof motors, there is no necessity for a building to be erected.
- 7. There is no danger of flooding the electrics.
- By adding stages, a very wide range of duties can be covered with standard parts, thus making for cheap and readily available spares.
- The pumps generally have a non-overloading KW characteristic and a steep head quantity curve.
- There are no radical loads on the bearings or glands, so they last longer and maintenance is reduced.
- In dirty water, grit tends to fall vertically out of the wear areas and so does less damage.

Specifications

The material and assembly are selected from a number of standard variations to suit the particular application.

The castings are generally made in a high quality close-grained cast iron and have long radius water passages to give the best performance in terms of efficiency and life. Casting in bronze and stainless steel are also available.

The impellers are of mixed flow design and can be either open-vane or shrouded, depending on the size. Then shrouded impellers have long suction eye rings, to give good life and performance. They are usually fitted to the shaft by means of a trapper sleeve, using a key when the load requires it.

The shaft is stainless steel, running in bearings chosen to suit the application. These include flutes cutless rubber and bronze. They can be product-lubricated or pressure-FED grease-lubricates.

The column pipe is either screwed or flanged steel suitably protected for the application. The bearing spiders are of high grade cast iron and the bearing bushes are as used in the pump. The line shafting can be product-lubricated or enclosed in a cover tube with oil, water or grease-lubricated.

The discharge head is either a rigid cast iron or fabricated steel bend with spigotted seats for the thrust bearing and drive motor stool. It contains the housing for the stuffing box.

Versatility of Installation

Soft packed glands, mechanical seals, or a glandless arrangement can be offered.

The pumps are designed for any type of drive:

- Electric Motor
- Belt Drive
- Gear Drive
- Engine or Steam Turbine

They can be suspended in wet sumps, boreholes, rivers, steel tanks or dams; in dry pits with a suction pipe connected to the bellmouth or as a "pot" pump with various positions of the inlet and outlet branches.

Typical Installations

1. Cooling Tower Recirculation

- Eliminate priming problems; multi-staged to suit pressure requirements.
- 2. Raw Water
 - The pot pump is ideal for raw water intake, and simplifies structures.
- 3. Primary Fuelling ServiceVolatile fluids require submerged pump units.
- 4. Transfer Service
 - Self-contained unit is ideal for L.P. gas transfer.

As a "Pot" Pump

The "pot" pump is particularly useful for inline boosting. It requires no priming and to a limited extent it is self-priming. It conserves space and requires minimum civil work and operational maintenance.

By reversing the pump bowls, the flow direction is reversed and low pressure glands result, even in very high pressure boosting applications.

In other applications it can be made completely glandless.

Sump Design

These sketches show some established criteria for proper sump design. These include submergence, clearance from the floor and walls. Spacing between the units when more than one pump is involved, and flow distribution and velocities.

Standard dimension charts are available for the range of pumps, giving clearances from the sump walls and the minimum submergence to retain optimum pump performance. These apply to cold water at sea level.

Discharge Head Option

Preferred Piping Arrangement

Sump Design Minimum Guide

Vertical Industrial Turbine Pumps

				Bo Len	wl gth				ſ	Dischar	ge Head				Opti	on Stra	iner		w	eights I	G
i	Pump Size	Discharge & Column Size C	Standard Flange Rating	1 st Stage L1	Add Stage L2	Max. Pump Area	Hdh	D(1)	E	F	G	м	N	0	P(2)	Lstr	R	Zmin	THR.ASSY DIS Head 1-st. Bowl Strainer	ADD Bowl	Column Per M Length

Model 6870 - Screwed Columns

6LC	80	493	146	165	321	178	203	98	19	343	260	14	75	127	64	480	140	9	22.4
6MC	100	491	146		354	265	260	125	22			20]			510	154	9	22.4
6HC		504	159			265										535	159	11.5	22.4
8MC		576	143	216	394	350	300	155	1	500	400	28	100	165		585	229	18	32.8
8HC	150	637	178													635	329	18	32.8
10W/0		670	181	254		350							150	203	76		366	34	32.8

Model 6920 - Flanged Columns

12HC	200	823	248	356	498	405	305	168	38	533	457	28	150	250	76	760	460	59	62
14HC	250	889	289	425	552	480	381	203		635	559		180	254		890	740	75	84
16HC		899	324										200	254		995	832	136	91
18HC	300	1069	359	483	658	540	432	235		660	584	32	230	343		1100	982	140	144
18XHC	350	1027	416	562	754	620	428	320		712	630		250	348		1120	1352	159	147
28HC	450	1397	523	698	1105	750	508	450		1016	864		330	380	100	1170	1966	455	169
32HC	500	1675	616	815	1205	890		508		1092	940	38	380	380		1270	2500	780	208
32XHC	600	1640	711	942	1350	1020	760	609		1420	1270		400	394		1320	2581	750	214
36ХНС	700	1697	797	942	1444	1050		648	40				430	394		1470	3193	1000	220

*Pump Dimensions (Not to be used for construction purposes)

Pump Performance

CAPACITY m³/hr

CNE Vertical Mixed Flow Pumps

The CNE pump is a vertical multistage turbine pump which has been developed for medium to high pressure application and is available with conventional mounting arrangement or fitted into a caisson or "can".

The main advantage of the CNE pump, when fitted in a caisson, are the low NPSH requirement at the inlet flange and the small amount of floor space taken up by the pump.

Types and Applications

CNE pumps are available in three main types: the basic XF design, and the caisson-fitted EF and TC versions. All share the same principal characteristics, with variations in detail to suit particular applications.

- XF Applications include industrial and water supply: available in wet well or dry well form.
- EF Power station, oil field and tank farm applications as boosters or main pumps
- TC This version of the range is same as the EF design but embodies the features which are called for as requirements in A.P.I.610 standard specification.

Range of Duties

With standard electric motor drive: Throughputs up to 7000 Imp. Gal./min. (1900 m³/h) at 50 Hertz speed 8400 Imp. Gal./min. (2280 m³/h) at 60 Hertz Generated heads up to 1000 ft. (305m) Temperatures up to 150°C (302°F) Pumps for handing larger capacities can be offered on application.

General

All Mather and Platt CNE pumps have a continuously rising characteristic curve.

The vertical design allows installation in a restricted space and once the pump is primed no further priming will be necessary. Special suction pipe arrangements are eliminated.

Castings

All castings are produced in local foundries and high quality casting techniques are employed to achieve clean internal passages for maximum efficiency in operation.

Accessibility

The motor coupling, the top combined thrust and radial bearing and the stuffing box are easily accessible through large hand holes in motor stool and discharge head.

Drives

Standard vertical solid shaft electric motors are the simplest and most commonly used form of drive. In the lower horsepower range hollow shaft motors can be supplied. Alternatively, when required the pumps can be driven by combustion engines or turbines through a right-angle gearbox.

Construction and Design Details

Discharge Head

The discharge head is either fabricated or cast in local foundries and is available in iron or steel. In the XF type it incorporates the delivery flange and the stuffing box and in the EF and TC designs the suction flange is also included. Mounted at floor level (on top of the caisson in the EF and TC designs), the discharge head supports the motor stool while the pump unit is suspended from its underside.

Motor Stool

The motor stool is a fabricated mild steel structure mounted on the top of the discharge head. It also carries the combined thrust and radial bearing of the pump.

Caisson (EF and TC)

Fabricated steel construction containing the complete pump assembly.

Bellmouth

The bellmouth is carefully designed to obtain favourable flow conditions in the liquid approaching the first stage impeller.

Bowls

Diffuser vanes, cast integrally in the pump bowl are matched carefully with the impeller. They are shaped to guide the flow to the next stage with a minimum loss. At the same time, they add substantially to the strength of the bowl. Each bowl also contains and a journal bearing.

Impeller

All impellers are of the closed type and in hydraulic balance. They are keyed to the pump shaft and axially located by interstage sleeves which at the same time act as bearing sleeves.

Rising Main Pipe

The column pipe is of flanged construction connecting the pump assembly with the discharge head. When required by the length of column, intermediate line shaft bearings are fitted and are clamped between the column flanges.

Shaft

The line shaft is accurately machined over its entire length and protected by the sleeves at all points of wear.

Wearing Parts

All CNE pumps are fitted with replaceable casing wear rings. If required impeller can also be supplied with wear rings which are shrunk onto the impeller necks and pinned in position. The shaft is protected by renewable sleeves in the areas of possible wear such as pump and line shaft bearings, leak-off bush and stuffing box. All wearing parts can easily be replaced to allow restoration of the original running clearances.

Glands

Stuffing boxes are designed so that either conventional packed glands or mechanical seal of all approved makes can be fitted, depending on application and customer's preference. For high pressures the stuffing box is fitted with a breakdown bush and the leakage fluid is returned to the pump suction. Provision is made for seeing liquid connections fed from the pump discharge or an external supply.

Bearings

Pump and line shaft bearings are made of asbestos reinforced cresylic resin material ("Railko") and are lubricated by the pumped liquid. The nature of this bearing material allows short periods of dry running, which enables the pump to be started without external pre-lubrication.

The pump thrust bearing carrying the rotating element and the hydraulic load is a standard tilting pad type combined thrust and radial bearings.This is a self-contained unit with all bearing surfaces running in an oil bath. Heavy duty ball or roller thrust bearings can be used on the smaller pumps in the range.

Optional Features XF Type

- Underground discharge to suit customer's installation.
- Thrust bearing built integrally with driving motor.
- Line shaft enclosed by tubing for clean water lubrication of bearings.
- Grease lubricated line shaft bearings.
- Water-cooled thrust bearing.
- Suction strainer.

EF and TC Types

- Underground discharge to suit customer's installation.
- Specially designed suction impeller for even lower NPSH required, if depth of the caisson is limited.

- Thrust bearing built integrally with driving motor.
- Water-cooled thrust bearing.

Quality Control

We place the utmost importance on the effective control of quality standards since they are so vital to the ultimate performance and reliability of the finished product. In pursuance of this policy the Mather and Platt Quality Control Organisation is directly responsible to the Power Division Chief Executive and exercises its influence at all stages from pre-production to final performance testing and when called for installation and commissioning.

Manufacture

Rigorous standards of acceptance are applied to raw materials and to the inspection and testing of all components produced at Park Works or by our subsidiaries or by sub-contractors. Measuring equipment is rigidly controlled and services by our centralised Standards Room which also provides sub-contractors with equipment, when necessary, under the same servicing procedure.

Materials Testing

We are fully equipped to carry out destructive and non-destructive testing of materials and components, using the most up-to date techniques including ultrasonic and radiographic examination.

Hydrostatic and Performance Testing

All components subjected to internal pressure are hydrostatically pressure tested to values in excess of the maximum working pressures. according to their duties and to any special requirements. The Mather and Platt test bed facilities are fully capable of handling tests on most pumps at full load/full speed. Operating temperatures up to 260 C (500 F) can be achieved on a closed loop pipe system and injection and bleed connections in this system make it possible for negative thermal shock conditions to be realistically simulated.

Customer Inspection

By arrangement all stages of manufacture and testing may be witnessed by the customer's and their engineers.

Auxiliaries

To supplement our range of pumps we offer a variety of auxiliary equipment with characteristics designed to suit individual installation conditions.

Automatic Starting Devices For bringing standby pumps into operation on loss of pressure.

Discharge Non-Return Valves

Instrument panels to suit customers' individual requirements.

Spare and Service

Every Mather and Platt pump is backed by an effective after-sales service organisation which is world-wide in scope and can draw upon the full engineering resources of the Mather and Platt Group. This Organisation offers:

- A fast and efficient replacement parts service with top priority given to parts required in emergency.
- Servicing on site anywhere in the world carries out by competent works-trained personnel.
- Works overhaul and/or reconditioning of pumps at Mather and Platt factories. Proving test on rebuilt pumps can be carried out on our fully equipped test beds.
- An advisory service for operational problems in any part of the world provided by a team of experienced technical service engineers.
- An erecting and commissioning service undertaken by fully qualified engineering staff.

In addition to all these after-sales functions our Spares, Repairs and Service Department can provide technical and drawing office services for surveys of existing plant, modification or up-dating of existing plant; production of interchangeability charts and recommendations on stock holding of strategic spare parts.

Standard Materials

	XF	EF and TC
Bowls	Cast Iron BS1452 Gr.14	Cast Iron BS1452 Gr.14
Beitmouth	Cast Iron BS1452 Gr.14	Cast Iron BS1452 Gr.14
Rising Main Pipe	Cast Iron BS1452 Gr.14	Cast Iron BS1452 Gr.14
Discharge head - standard	Cast Iron BS1452 Gr.14	Cast Iron BS1452 Gr.14
Oil and Petroleum Industry	-	Cast Steel BS592 Gr. 8
Motor Stool	Fabricated Mild Steel	Fabricated Mild Steel
Caisson	-	Fabricated Mild Steel
Impellers - Standard	BS1400LG2-C	BS1400LG2-C
Special Suction	-	BS1400PB3-C
Impeller Wear Rings	BS1400PB3-C	BS1400PB3-C
Case Wear Rings	Bearing Bronze M&P Spec.	Bearing Bronze M&P Spec.
Shaft	Steel BS970EN8	Steel BS970EN8
Shaft Sleeves	BS1400PB3-C	BS1400PB3-C
O Ring seal - Standard	Ethylene Propylene	Ethylene Propylene
Oil and Petroleum Industry	-	Viton A

* A variety of other materials can be offered depending on application and customers' requirements

Sectional Drawing

		Parts List
ltem	QTY	Part
1	1	Suction Strainer
3	1	Suction Bellmouth
4	6	Diffuser Neck Rings
5	1	Plain Bearing
6	1	Diffuser
9	4	Gasket
10	1	Column
11	2	Gasket
12	1	Intermediate Bearing Housing
13	1	Intermediate Bearing
15	1	Sole Plate
17	1	Delivery Bend
18	1	Motor Stool
22	1	Impeller Locknut
23	3	Impeller
24	3	Sleeve
25	1	Pump Shaft
26	1	Muff Coupling
28	1	Head Shaft
29	1	Intermediate Bearing Sleeve
31	1	Gland Sleeve
32	1	Water Thrower
33	2	Sleeve Nut
34	1	3B Flexible Coupling - Pump Half
35	1	3B Flexible Coupling - Motor Half
36	4	3B Flexible Coupling - Pins
37	4	3B Flexible Coupling - Bushes
38	4	White Nylon Nut
39	1	Internal Circlip
40	1	Leak - Off Bush
41	1	Stuffing Box
42	1	Leak - Off Piping
43	1	Copper Connector
44	1	Gasket
46	6	Gland Packing
48	1	Split Gland
49	1	Thrust Bearing Housing
50	1	Thrust Bearing
51	1	Thrust Bearing Collar
52	1	Thrust Bearing Cover
53	1	Grease Nipple

Selection Chart CNE Pumps XF. EF. TC

50 HERTZ SPEEDS

HEAD IN FEET

IMPERIAL GALLONS PER MINUTE

HEAD IN METRES

Selection Chart CNE Pumps XF. EF. TC

60 HERTZ SPEEDS

U.S. GALLONS PER MINUTE

IMPERIAL GALLONS PER MINUTE

HEAD IN FEET

Split Casing Pumps

Applications

APE split case pumps are practically maintenance free, and provide years of reliable, trouble-free service. These versatile pumps are available in a wide variety of materials and drives, including electric turbines to meet your application requirements.

General liquid pumping, power plants, steel mills, chemical plants, paper mills, refineries, cooling and heating systems and water booster service are few of the applications in which our split case pumps thrive.

Features

1. Impellers are dynamically and hydraulically balanced, one-piece vacuum cast of the Francis Van design. This reduces inlet losses and accommodates high suction lifts, which reduces axial thrust loads. Single suction impellers are mounted back-to-back for hydraulic balance, and their state-of-art contoured passageways are extremely smooth, which results in high efficiency and quiet operation. Impellers are firmly keyed and locked to an accurately finished oversized shaft to absorb all shock loads.

- The rugged, heavy duty two-piece casting is matched and split horizontally along the center line of the shaft. This allows for removal of the rotating assembly without disturbing suction and discharge piping or the driver mounting. The lower half casting includes integrally cast mounting structure and a large volute-type suction area to assure laminar entrance velocities.
- Grease-lubricated cartridge-type bearings mounted in a rigid dust-proof housing support the rotating assembly, assuring smooth operation and extremely long bearing life.
- 4. Large, deep packing boxes are carefully machined into the casing and come standard with packing and split interlocking gland. Most mechanical seals are interchangeable with packing in the packing box.
- Renewable casing and impeller wear rings are locked in place to prevent rotation. These rings are designed to minimise recirculation and maintain high efficiency over long periods.
- High-quality heat-treated steel shafts are accurately machined along their entire length with additional grinding to an even finer tolerance at the bearing locations.
- 7. Easily replaceable centrifugally cast sleeves protect the shaft from packing wear, and are sealed to prevent leakage. Sleeves are accurately positioned and locked in place. Structural steel bases, designed to be filled with grout to lock the unit in place and provide mass to resist torsional movement, support the combined weight of the pump and drive.

Specifications

Casing

- Cast iron volute type designed to produce a smooth flow with gradual changes in velocity. It is along the center line, facilitating easy access to inspect or withdraw the rotating assembly without disturbing the pipe work.

Casing Wear Rings

- All pumps fitted with easily replaceable wear rings.

Impeller

- The impeller is of the shrouded double entry type, manufactured in bronze or cast iron. After machining the impeller is hand finished and statically balanced with the pump shaft to ensure smooth running of rotating parts.

Shaft

- The shaft is made of high-tensile mild steel, turned and ground depending on the application.

Shaft Sleeves

 Renewable shaft sleeves are fitted as standard to the D.E.S.C. range. Model K and KI can have these fitted as an extra.

Bearings

 Model K and KL have self-aligning ball bearings fitted. Model D.E.S.C. has heavy duty ball and roller bearings. All bearings are enclosed and grease packed in housing bolted to the pump casing.

Stuffing Box

 Stuffing boxes may be of the conventional soft packed type with adjustable glands arranged for either water or grease sealing.
Alternatively, if preferred, mechanical seals can be fitted.

The materials mentioned in the specification are those supplied for pumps dealing with clean water. There is a choice of materials for different applications.

Sectional Drawing

		Parts	List		
ltem	QTY	Part	ltem	QTY	Part
1	1	Bottom Casing	11	10	Gland Packing
2	1	Top Casing	12	1	Bearing Housing NDE
3	1	Impeller	13	1	Bearing Cover NDE
4	2	Wear Ring	14	1	Bearing Housing DE
5	4	Wear Ring Stop	15	1	Bearing Cover DE
6	1	Shaft	16	1	Roller Bearing
7	2	Shaft Sleeve	17	1	Ball Bearing
8	2	Gland	18	2	Shaft Nut
9	2	Lantern Ring in Halves	19	1	Bearing Nut
10	2	Water Flinger	20	3	Bearing Housing Seal

Sectional Drawing

		Parts	List		
ltem	QTY	Part	ltem	QTY	Part
1	1	Bottom Half Casing	11	2	Casing Eyering
2	1	Top Half Casing	12	2	Impeller Stops
3	2	Bearing Housing Cap	13	2	Impeller Distance Collar
4	1	Impeller	14	2	Lantern Ring
5	1	Shaft	15	2	Gland
6	1	Coupling Key	16	2	Bearing Sleeve
7	1	Impeller Key	17	2	Ball Bearing
8	1	Bearing Cover NDE	18	2	Lock Nut
9	1	Bearing Cover DE	19	2	Lock Washer
10	2	Neck Ring	20	8	Gland Packing

Split Casing Pumps

Shaft View

Models DESC, ADM, BDY, BDM

									_																
Pump Size	А	в	с	D	Е	F	G	н	1	т	к	L	м	Ν	0	Р	Q	R	s	т	U	v	w	х	WT-KG
8-10 DESC	250	200	533	533	343	343	356	518	660	508	610	508	610	559	267	268	356	356	127	114	69.8	19	62.2	25	800
10-12 ADM	300	250	457	457	260	286	324	495	616	280	356	534	610	445	240	240	279	279	127	86	50.8	15.8	51	22	730
10-12 DESC	300	250	610	610	378	378	419	518	660	305	406	380	508	610	380	380	457	457	127	114	69.8	19	62.2	25	900
12-14 BDY	350	300	559	762	352	352	419	591	737	230	305	584	660	635	330	340	406	406	108	95	69.8	15.8	57.2	22	1050
12-14 DESC	350	300	610	533	394	394	420	660	800	560	711	560	711	673	280	280	381	381	140	114	80	22	81	32	1500
14-16 BDM	400	350	610	457	356	356	432	514	673	230	305	584	660	660	318	264	394	330	124	111	63.5	15.8	55.8	27	1150
16-18 BDM	450	400	686	508	387	387	457	629	781	280	356	738	814	724	380	290	457	356	117	113	69.8	19	62	27	1350

Model K Pump

Pump Size	A	в	с	D	E	F	G	н	1	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	V	w	х	MASS
2	65	50	219	194	165	165	185	292	353	-	-	216	267	254	102	102	140	140	72	52	31.75	9.5	28	19	100
2 1/2	80	65	235	210	206	206	221	292	353	-	-	216	267	305	114	114	152	152	72	52	31.75	9.5	28	19	115
3	100	80	244	206	184	184	206	300	380	-	-	241	292	298	95	95	146	146	80	64	31.75	9.5	28	18	140
4	125	100	268	254	203	203	221	331	439	-	-	254	330	337	114	114	165	165	110	76	38.1	12.7	33	18	195
5	150	125	305	305	216	216	243	347	457	-	-	305	381	362	140	140	203	203	112	75	38.1	12.7	33	22	300
6	180	150	343	343	235	235	266	368	457	-	-	330	406	394	165	165	229	229	98	76	44.45	15.875	38	22	315
8	230	200	406	381	273	273	290	471	533	-	-	381	457	464	178	178	254	254	127	92	50.8	15.875	44	22	530

Model KL Pump

Pump Size	А	в	с	D	Е	F	G	н	T	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	V	w	х	MASS
2	65	50	203	191	140	140	155	282	353	-	-	216	267	229	102	102	140	140	72	52	31.75	9.5	28	18	60
2 1/2	80	65	203	191	114	114	140	282	353	-	-	216	267	216	102	102	140	140	72	52	31.75	9.5	28	18	75
3	100	80	219	194	127	127	146	300	380	-	-	216	267	241	102	102	140	140	80	64	31.75	9.5	28	20	95
4	125	100	232	206	140	140	155	300	380	-	-	241	292	279	95	95	146	146	80	64	31.75	9.5	28	18	100
5	150	125	267	229	159	159	178	331	440	-	-	254	330	305	114	114	165	165	108	76	38.1	12.7	33	18	170
6	180	150	308	282	184	184	219	346	457	-	-	305	381	343	140	150	203	203	110	75	38.1	12.7	33	22	265
7	200	180	368	305	197	197	252	368	457	-	-	330	406	368	165	165	229	229	90	76	44.45	15.875	38	22	330
8	230	200	381	330	229	229	262	413	508	-	-	381	457	419	165	165	229	229	95	76	44.45	15.875	38	22	370

 \ast Dimensions J and K do not apply to model K and KL pumps

COMPOSITE RANGE CHART SPLIT CASING PUMPS AT 1450 RPM

10

Single Stage Split Casing Pumps

General Features

The ALE to EME range of pumps form a comprehensive range of heavy duty single-stage horizontally split-casing pumps covering all capacities up to 2000 I/s and heads up to 160 meters.

The range has been designed in its standard form for all general industrial applications and optional features are readily available for special applications involving corrosion, abrasion and high temperatures which may be encountered in steelworks, chemical plant, refineries etc.

A double entry impeller is fitted to minimise axial thrust, and on larger units a double volute casing is employed to limit radial forces.

The shaft assembly complete with cartridge type bearing sub-assemblies, can be removed from the pump by removing the top half casing, without disturbing main pipework connections.

The complete range has been designed to give maximum interchangeability of wearing parts between different pump sizes and is built round only 6 shaft groups each comprising shaft sleeves and complete bearing assemblies. At the same time the impeller can be adjusted easily to give "tailor-made" performance anywhere within the range. The pumps are suitable for direct coupled drive by electric motor, turbine or I.C. engine. Vertical operation with open or closed-type shafting can be provided.

Specification (Standard Pump)

Casing (split) - Cast Iron Shaft, Locknut and Ring - Steel Impeller - Bronze or Cast Iron Neck Rings - Bearing Bronze or Cast Iron Stuffing Box Bushes - Bearing Bronze or Cast Iron Lantern Rings - Polyethylene Sleeves and Nuts - Bronze or Cast Iron Glands - Bronze Packing - Graphited Cotton Bearing Housing - Cast Iron Bearing End Covers - Cast Iron Water Throwers - Rubber Bearings - Anti-Friction Ball (See Alternative Specifications) Bearing Lubrication - Grease Flange Drilling - To match BS 4504 or equivalent standard.

Alternative Specifications

The units can be supplied with one or more of the following features if so required:

- Horizontally split, bronze/white metalled sleeve bearings provided with oil ring lubrication and an anti-friction thrust unit at the pump free end.
- Mechanical seals.
- Impeller wearing rings.
- Flanges and fittings to suit preferred national or other standards e.g. A.P.I. or D.I.N.
- A wide range of alternative material selections to suit any particular special operating conditions or customer preference.
- Gland design adaptable for either internal or external sealing water service as may be required.

Sectional Drawing A-A (1:3) (1)(18) (10) (9 (11 (20) (25) (19) (35) (23) 14 8 (4 6 (22 (13) 7 (17) (21 (24) (15) (12) 3 (16) (26) 5 2

		Parts	List		
ltem	QTY	Part	ltem	QTY	Part
1	1	Top Half Casing	15	2	Thrust Bearing
2	1	Bottom Half Casing	16	1	Thrust Collar
3	1	Shaft	17	1	NDE Inner Bearing Cover
4	2	Sleeve Nut	18	1	DE Outer Bearing Cover
5	1	NDE Nut	19	1	DE Inner Bearing Cover
6	1	DE Nut	20	1	NDE Outer Bearing Cover
7	1	Sleeve - NDE	21	1	NDE Bearing Housing
8	1	SLEEVE - DE	22	1	DE Bearing Housing
9	1	Impeller	23	10	Gland Packing
10	2	Neck Ring	24	1	Spacer NDE
11	2	Stuffing Box Bush	25	1	Spacer DE
12	2	Logging Ring	26	1	Spacer DE
13	2	Gland	35	4	Muff Coupling Nut
14	1	Bearing			

Mather and Platt

Single Stage Split Casing Pumps

CAPACITY IN LITRES PER SECOND

Single Stage Split Casing Pumps

	Shaft Group				-									~	4				
	Type	ALE	BLE	CME	DME	ALE	BLE	CME	ALE	EME	DME	EME	BLE	CME	DME	EME	ALE	BLE	ALE
	Size	100/125	100/125	100/125	100/125	125/150	125/150	125/150	150/200	100/125	125/150	125/150	150/200	150/200	150/200	150/200	200/200	200/200	200/250
נ	<	370	370	370	370	370	370	370	370	377	411	381	411	411	411	411	411	411	411
	æ	416	416	416	416	416	416	416	416	440	474	444	474	474	474	474	474	474	474
	¥¥	,	,		,					,							ı		
=	88		,		,					,			1	,					
	υ	18	18	18	18	18	18	18	18	18	22	18	22	22	22	22	22	22	22
ערעדיי	٥	279	279	254	279	318	318	279	343	266	318	333	343	426	343	369	343	426	426
•	ш	250	250	250	280	337	356	305	381	330	330	302	406	432	369	407	407	407	432
	u.	220	220	230	250	280	318	267	280	280	280	266	330	381	330	350	317	375	318
	σ	135	140	145	170	197	216	162	203	19.0	184	226	229	274	203	229	227	248	248
	т	145	152	17.0	195	225	255	183	250	225	210	255	280	305	216	244	270	290	290
	-	150	150	150	150	150	150	150	150	126/50	160	125	200	200	200	200	200	200	200
	ь	10.0	10.0	10.0	10.0	10.0	10.0	10.0	100	146/8	100	105	100	100	100	100	100	100	100
	~	85	85	85	85	85	85	85	85	0	85	65	135	135	135	135	135	135	135
	-	110	110	110	110	110	110	110	110	125	110	160/120	160	160	160	160	160	160	160
	٤	10.0	10.0	10.0	10.0	10 0	10.0	10.0	10.0	100	120	0 100	120	120	120	120	120	120	120
	z	60	60	60	60	60	60	60	60	90	50	110/70	100	100	100	100	100	100	100
	0	95	95	95	95	95	95	95	95	61/59	95	100	130	130	130	130	15.2	15.2	152
	٩	100	100	100	100	100	100	100	100	80	100	95	100	100	100	100	100	100	100
	Ø	30	30	30	30	30	30	30	30	0	30	50	65	65	65	65	87	87	87
	۲	250	240	250	250	285	285	285	340	270	285	300	340	340	340	360	340	340	395
	s	8/16	8/16	8/16	8/16	8/20	8/20	8/20	12/20	8/24	8/20	8/24	12/20	12/20	12/20	12/24	12/20	12/20	12/20
	F	210	210	210	210	240	240	240	295	220	240	250	295	295	295	310	295	295	350
	∍	26	26	26	26	26	26	26	30	30	26	34	30	30	30	34	30	30	28
	>	220	220	220	220	250	250	250	285	235	250	270	285	285	285	300	340	340	340
	>	8/16	8/16	8/16	8/16	8/16	8/16	8/16	8/20	8/20	8/16	8/24	8/20	8/20	8/20	8/24	12/20	12/20	8/20
	×	180	180	180	180	210	210	210	240	190	210	220	240	240	240	250	295	295	295
	≻	24	24	24	24	26	26	26	26	28	26	30	26	26	26	34	30	30	26

Mather and Platt

Single Stage Split Casing Pumps

z	30	30	30	26	32	32	32	28	30	34	32	32	32	32	30	36	40	30	30	30	44	40	38	30	40	40	40	42	48	48	58
7	295	295	295	295	355	355	410	400	295	310	355	355	410	410	460	370	430	460	460	460	490	585	525	525	585	585	585	650	770	770	950
×	8/20	8/20	8/20	8/20	12/24	12/24	12/24	12/20	12/20	12/24	12/24	12/24	12/24	12/24	16/20	12/27	9/16	16/20	16/20	16/20	16/30	20/27	16/27	16/27	20/27	20/27	20/27	20/30	20/33	20/33	24/36
×	340	340	340	340	405	405	460	445	340	360	405	405	460	460	505	425	485	505	505	505	555	640	580	580	640	640	640	715	840	840	1025
>	30	30	32	28	32	32	36	30	32	36	32	32	36	36	32	40	44	32	32	32	48	40	40	40	42	42	42	48	48	48	58
∍	295	295	355	350	410	410	470	460	355	370	410	410	470	470	515	430	490	515	515	515	550	585	585	585	650	650	650	770	770	770	950
F	12/20	12/20	12/24	12/20	12/24	12/24	16/24	16/20	12/24	2/27	12/24	12/24	16/24	16/24	16/24	16/27	16/30	16/24	16/24	16/24	16/33	20/27	20/27	20/27	20/30	20/30	20/30	20/33	20/33	20/33	24/36
æ	340	340	504	395	460	460	520	505	405	425	460	460	520	520	565	485	555	565	565	565	620	640	640	640	715	715	715	840	840	840	1025
Ø	73	73	73	73	73	73	73	73	100	100	100	100	150	150	120	100	120	120	120	120	95	120	120	120	120	120	203	225	280	280	225
٩	114	114	114	114	114	114	114	114	150	150	150	150	150	150	150	120	150	150	150	150	150	150	150	150	150	150	165	205	200	200	205
0	152	152	152	152	152	152	152	152	200	200	200	200	250	250	320	170	220	220	220	220	195	220	220	220	220	220	305	373	416	416	373
z	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	155	155	155	155	155	155	130	180	200	200	200	200	00/200	200	200	200	200	200	305	285	20.0	20.0	285
Σ	135	135	135	135	135	135	135	135	15.0	15.0	15.0	15.0	15.0	15.0	200	180	200	200	200	200	200 4	200	200	200	200	200	203	230	200	200	230
-	160	160	160	160	160	160	160	160	230	230	230	230	230	230	230	270	300	300	300	300	00/300	300	300	400	300	300	407	400	300	300	400
~	115	115	115	115	165	165	165	165	175	175	175	175	200	200	280	200	280	280	280	280	205 5	280	280	280	350	350	330	400	440	440	400
Ъ	120	120	120	120	120	120	120	120	150	150	150	150	150	150	150	120	150	150	150	150	200	150	150	150	150	150	165	205	200	200	225
-	200	200	200	200	250	250	260	260	275	275	275	275	300	300	380	270	380	380	380	380	355	380	380	380	450	450	432	550	576	576	550
т	336	370	315	350	330	360	371	375	395	449	380	415	405	440	460	476	476	500	520	600	565	510	520	580	570	560	630	596	660	660	685
U	292	343	292	299	273	317	318	318	356	435	343	356	343	378	407	407	445	445	457	495	512	457	470	521	495	518	572	560	559	559	651
u.	432	457	381	457	337	432	390	391	458	500	457	492	483	534	464	559	610	559	619	711	580	578	565	762	584	610	762	745	610	610	762
ш	483	470	483	483	508	533	565	559	521	682	534	584	584	629	698	635	660	737	762	813	848	762	762	864	838	864	915	1067	915	915	1143
٥	426	464	464	464	464	546	546	546	546	680	546	546	591	591	686	622	686	686	686	762	762	762	762	800	800	800	889	940	940	940	1160
υ	26	22	26	26	26	26	24	22	26	26	26	26	26	26	26	26	30	26	26	26	35	26	26	26	26	32	32	33	33	33	33
BB	696	696	696	696	696	696	696	696	800	800	800	800	800	800	800	917	887	917	917	917	917	917	917	917	917	917	1042	1042	1122	1122	1122
AA	608	608	608	608	608	608	608	608	677	677	677	677	677	677	677	721	751	781	781	781	781	781	781	781	781	781	915	915	995	995	995
8	612	612	612	612	612	612	612	612	693	693	693	693	693	693	693	64.5	94.5	324.5	824.5	824.5	324.5	324.5	324.5	324.5	824.6	824.5	952.2	952.2	010.5	010.5	010.5
۲	525	525	525	525	525	525	525	525	594	594	594	594	594	594	594	643 7	673 7	703 8	703 8	703 8	703	703 8	703 8	703	703 8	703 8	812	812	892	892	892
Size	200/200	200/200	200/250	200/250	250/300	250/300	300/350	300/350	200/250	200/250	250/300	250/300	300/350	300/350	350/400	250/300	300/350	350/400	350/400	350/400	350/400	450/450	100/450	100/450	150/500	150/500	150/500	009/009	009/000	009/009	300/800
ype	CME	DME	BLE	CME	ALE :	BLE	ALE :	BLE ;	OME	EME	CME	OME	CME	SME :	ALE	EME	EME	BLE	CME	SME	EME	ALE .	BLE 4	CME	BLE	CME	OME -	CME	ALE 6	OME	ALE 8
Shaft Group	~	-		m	-						~]	4	9	1							ഹ			~				~	ø	~	-

Two Stage Split Casing Pumps

General Features

The G.M.E. range of pumps forms a comprehensive selection of heavy duty two stage horizontally spilt-casing units covering all capacities up to 500 l/s and heads up to 250 metres.The range has been designed in its standard form for all general industrial applications and optional features are readily available for special duties involving corrosion, abrasion and high temperatures such as may be encountered in steelworks, chemical plants, refineries, etc.

Two single entry impellers are fitted in a back to back arrangement to minimise axial thrust and the casing in provided with a crossover bend to transfer the liquid being pumped from the first stage to the second stage.

The shaft assembly complete with cartridge type bearing sub-assemblies can be removed from the pump by removing the top half casing without disturbing main pipework connections.

The complete range has been designed to give maximum interchangeability of wearing parts between different pump sizes and is built round only 5 shaft groups each comprising shaft, sleeves, complete internal bushings and external bearing assemblies. At the same time the impellers can be adjusted easily to give "tailor made" performance anywhere within the range. The pumps are suitable for direct coupled drive by electric motor or other forms of prime mover. Vertical operation in either a close coupled arrangement or with extended vertical drive shafting can be provided to suit the application.

Specification (Standard Pump)

Casing (Split) - Cast Iron Shaft, Locknut and Ring - Steel Impellers - Bronze Neck Rings - Bearing Bronze Inter Stage Collar - Stainless Steel, Ceramic Coated Inter Stage Bush - Stainless Steel, Ceramic Coated Stuffing Box Bush - Bearing Bronze Breakdown Bush - Bearing Bronze Lantern Ring - Polyethylene Sleeves and nuts - Bronze Glands - Bronze Packing - Graphited Cotton Bearing Housing - Cast Iron Bearing End Covers - Cast Iron Water Throwers - Rubber Bearings - Anti Friction Ball (See alternative specifications) **Bearing Lubrication** - Grease Flange Drilling - To match B.S. 4504 or equivalent standard.

Alternative Specifications

The units can be supplied with one or more of the following features if so required.

- Horizontally split, bronze/white metalled sleeve bearings provided with oil ring lubrication and either an anti-friction ball or tilting pad double thrust unit at the pump free end.
- Mechanical Seals.
- Impeller wearing rings.
- Flanges and fitting to suit preferred national or other standards e.g. A.P.I. OR D.I.N.
- A wide range of alternative material selections to suit any particular special operating conditions or customer preference.
- Gland design adaptable for either internal or external sealing water service as may be required.

Sectional Drawing (1) ZZ (16) 9(13) 2 (14) (15) '(17)⁽¹⁹⁾ 20 (4)3 (22) 6 24) T (21) (10) (25) Φ (8) 5 11 (12) $\overline{\mathcal{T}}$ (18) (23)

		Pa	rts Lis	st	
ltem	QTY	Part	ltem	QTY	Part
1	1	Crossover Bend	14	2	Bearing End Covers
2	1	Casing	15	2	Deflector
3	1	Lock Nut	16	1	Stuffing Box Bush
4	7	Gland Packing	17	1	Thrust Collar
5	2	Impeller	18	1	Interstage Ring
6	1	Shaft	19	1	Bearing Housing NDE
7	1	Casing Ring	20	1	Bearing Housing DE
8	1	Interstage Sleeve	21	1	Angular Contact Ball Bearing
9	1	Sleeve DE	22	1	Deep Groove Ball Bearing
10	4	Shaft Nut	23	1	Sleeve NDE
11	1	Interstage Bush	24	1	Locking Washer
12	1	Breakdown Bush	25	2	Split Gland
13	1	Lantern Ring			

Two Stage Split Casing Pumps

NET GENERATED HEAD IN METRES

CAPACITY IN LITRES PER SECOND

Two Stage Split Casing Pumps

	uo	E1 F1	7 8	8 10	9 14	11 18	12 20	Ø	50	50	60	100	130	130	130	130	140		8	8	8	4	4	4	4	4	6
	xtensi	D1	24.00 23.80	33.00 32.80	44.50 44.30	58.00 57.80	67.50 67.30	٩	100	100	100	120	150	150	50	120	200		2	2	2	3	3	m	m	m	3
	Shaft E	C1	28.011 28.002	38.018 38.002	60.025 0.009	35.030 35.010	'5.030 75.010	0	110	110	120	17.0	220	220	220	220	290	×	190	190	190	250	310	250	310	310	370
	ndard	B1	86	86	105 5	125	146	7	0	0	0	0	0	0	0	0	0								_		
	Star	A1	88	100	137	156	182.5		9	6	13	13	17	17	17	17	20	≥	8/20	8/20	8/20	8/24	12/24	8/24	12/24	12/24	12/27
	Shaft	Group	1	2	ю	4	ம	Σ	100	100	100	120	150	150	150	150	200								_		
L		-			2 ₹			-	110	110	180	190	245	245	245	245	300	>	235	235	235	300	360	300	360	360	425
			i	ы Б	Section A		ters	~	80	80	140	160	250	250	250	250	280					_					
					H DINS		millime	Б	100	100	100	120	150	150	150	150	200		28	28	34	34	36	34	34	36	40
		Σ					ons in r	-	140	140	200	230	340	340	340	340	430	F	190	190	250	250	370	310	310	370	430
		z	5				imensi	т	355	355	390	400	828	848	960	1077	1212								_		
		z z	*	ANCH CASING	+	 ,	۵ *	U	178	178	200	200	20/305	343	330	381	578	S	8/20	8/20	8/24	8/24	12/27	12/24	12/24	12/27	16/27
		LESØ C		<u>0</u> .0		SIZE		ш	254	254	320	365	444.5 2	444.5	490	560	584	œ	35	35	00	00	.25	60	60	.25	.25
		4 HO	A	סבוואבו	r	5 No. 8	T P.C.I	ш	267	267	360	360	508	508	534	610	762		2	2	e	3	4	m	m	4	4
ш								٩	300	300	360	370	495	520	525	600	830	B2	27	27	33	40	54	49	60	60	70
				ROTATION	5			υ	18	18	18	26	22	26	22	26	33			•	8	9	4	7	7	4	,
1:	ична 🛛						ш Д	BB		-	1	680	793	843	843	843	926.5	۲ ۲	26	56	10	11	19	17	18	19	77
	Ļ		H		-1	۸Ø	. & SIZE LTS ON P.C.D.	AA		-		595	677	747	767	747	835	ivery Branc ominal Bore	100	100	100	150	200	150	200	200	250
						≳ ±	of BI V	۵	416	416	474	599	693	743	743	743	836.5	Bore No									
A (OR AA)						DELIVER		A	370	370	411	512	594	664	684	664	757	Suction B Nominal	100	100	15.0	150	250	200	200	250	300
BB)	CASING			G				Size	100/100	00/1000	100/150	150/150	150/200	50/2000	200/200	200/250	250/300	Size	100/100	00/1000	100/150	150/150	150/200	50/2000	200/200	200/250	250/300
B (OR				-			[Lype	GME	GME 1	GME	GME	GME	GME 1	GME 2	GME 2	GME :	Type	GME	GME 1	GME	GME	GME	GME 1.	GME 2	GME 2	GME :
ł				<u> 4 ml -</u>	SUCTION ,	BRANCH		Shaft . Group	-		2	m	4	1			ы	Shaft Group	-		2	е	4				ъ

Mather and Platt

End Suction Pumps

Features

Pumps based on DIN. 24255 dimensions. Back pull-out design to facilitate maintenance and no disturbance of pipe work when fitted with spacer coupling.

Pedestal mounted bearing housing available for belt drives and allows angled or horizontal positioning of delivery branch.

Series 1 - Pumps available with grease or oil lubricated bearings.

Specifications

Casing

High efficiency volute type with flanges to BS. 4504. Casting wear rings are fitted as standard on all Series 3 pumps. Series 1 and 2 are available as an optional extra.

Impeller

Double shrouded overhung impeller, hydraulically balanced, keyed to the shaft.

Shaft Steal

Standard arrangement for pumps is gland packing with mechanical seals available as an alternative.

Material of Construction Pump Casting - Cast Iron Bearing Housing - Cast Iron Impeller - Cast Iron or Bronze Shaft - Steel Wear Rings - Cast Iron or Bronze

Alternative material combinations are available. **Temperature Limits** 104°C - Pumps with soft packed glands. 140°C - Pumps with mechanical seals.

Reduce working pressures shown on dimension sheet by 2 bars when operating above 105°C.

Direction of Rotation Clockwise when looking at shaft end.

Application

Volute casing centrifugal pump, end suction type, main dimensions and performance according to DIN 24255 standards with complementary sizes to extend performance range. For duties of approx. 4000 m³/hr flanges DN 500/500 are required. Up to a duty of approx. 500m³/hr (pump flanges DN 200/150) the pumps are also available in space-saving block design type "APEbloc".

APE pumps are designed to handle media:

- Which are clean or slightly abrasive
- Having temperatures up to 140°C
- With viscosities not exceeding 150mm²/s (cSt)
- Which can easily be pumped

Special materials upon request. All pumps available for 50/60 Hz.

FLOW RATE - CU. METERS PER HOUR

End Suction Pumps Performance Chart

2900 RPM

HEAD METERS

Series 1

Туре	DNs	DN⊳	a	f	hı	h2	h₃	b	е	mı	m2	m 3	m4	ni	n2	Пз	N4	SI	S 2	w	×	d	T	kg
32-160	50	32	80	360	132	160	160	50	80	100	70	180	130	240	190	125	100	M12	M12	-	80	24	50	30
32-200	50	32	80	360	160	180	160	50	80	100	70	230	160	240	190	160	125	M12	M14	-	80	24	50	34
32-250	50	32	100	360	180	225	160	65	80	125	70	230	160	320	250	160	125	M12	M14	-	80	24	50	47
40-160	65	40	80	360	132	160	160	50	80	100	70	180	130	240	190	125	100	M12	M12	-	80	24	50	31
40-200	65	40	100	360	160	180	160	50	80	100	70	230	160	265	212	160	125	M12	M14	-	80	24	50	35
40-250	65	40	100	360	180	225	160	65	80	125	70	230	160	320	250	160	125	M12	M14	-	80	24	50	47
40-315	65	40	125	470	225	250	200	65	110	125	95	300	210	345	280	200	160	M12	M16	-	80	32	80	82
50-160	65	50	100	360	160	180	160	50	80	100	70	180	130	265	212	125	100	M12	M12	-	80	24	50	33
50-200	65	50	100	360	160	200	160	50	80	100	70	230	160	265	212	160	125	M12	M14	-	80	24	50	39
50-250	65	50	100	360	180	225	160	65	80	125	70	230	160	320	250	160	125	M12	M14	-	80	24	50	49
50-315	65	50	125	470	225	280	200	65	110	125	95	300	210	345	280	200	160	M12	M16	-	80	32	80	83
65-125	80	65	100	360	160	180	160	65	80	125	95	180	130	280	212	125	100	M12	M12	-	80	24	50	34
65-160	80	65	100	360	160	200	160	65	80	125	95	230	160	280	212	160	125	M12	M14	-	80	24	50	39
65-200	80	65	100	360	180	225	160	65	80	125	95	230	160	320	250	160	125	M12	M14	-	80	24	50	43
65-250	80	65	100	470	200	250	200	80	110	160	95	300	210	360	280	200	160	M16	M16	-	80	32	80	72
65-315	80	65	125	470	225	280	200	80	110	160	120	300	210	400	315	200	160	M16	M16	-	100	32	80	84
80-160	100	80	125	360	180	225	160	65	80	125	120	230	160	320	250	160	125	M12	M14	-	100	24	50	43
80-200	100	80	125	470	180	250	200	65	110	125	95	300	210	345	280	200	160	M12	M16	-	100	32	80	63
80-250	100	80	125	470	200	280	200	80	110	160	95	300	210	400	315	200	160	M16	M16	-	100	32	80	78
80-315	100	80	125	470	250	315	200	80	110	160	120	300	210	400	315	200	160	M16	M16	-	100	32	80	95
100-200	125	100	125	470	200	280	200	80	110	160	120	300	210	360	280	200	160	M16	M16	-	120	32	80	71
100-250	125	100	140	470	225	280	200	80	110	160	120	300	210	400	315	200	160	M16	M16	-	120	32	80	86
100-315	125	100	140	470	250	315	200	80	110	160	120	300	210	400	315	200	160	M16	M16	-	120	32	80	100
100-400	125	100	140	530	280	355	250	100	110	100	120	350	250	500	400	250	200	M20	M16	-	120	42	110	151
125-250	150	125	140	470	250	355	200	80	110	100	150	300	210	400	315	200	160	M16	M16	-	140	32	80	99
125-315	150	125	140	530	280	355	250	100	110	160	120	350	250	500	400	250	200	M20	M16	-	140	42	110	152
125-400	150	125	140	530	315	400	250	100	110	200	150	350	250	500	400	250	200	M20	M16	-	140	42	110	160
150-200	200	150	160	470	280	370	200	100	110	200	150	300	210	550	450	200	160	M20	M16	-	140	32	80	126
150-250	200	150	160	475	280	400	200	100	110	200	150	300	210	550	450	200	160	M20	M16	-	140	32	80	152
150-315	200	150	160	530	280	400	250	100	110	200	150	350	250	550	450	250	200	M20	M16	-	140	42	110	160
150-400	200	150	160	530	315	450	250	100	110	200	150	350	250	550	450	250	200	M20	M16	-	140	42	110	175

Series 2

Туре	DNs	DN₀	a	f	hi	h2	h₃	b	e	mı	m 2	m3	m4	nı	n 2	n3	N 4	S1	S 2	w	x	d	I	kg
80-50-250	80	50	125	500	180	225	-	65	-	125	95	-	-	320	250	-	-	M12	-	-	140	32	80	112
80-50-315	80	50	125	500	225	280	-	65	-	125	95	-	-	345	250	-	-	M12	-	-	140	32	80	85
100-65-315	100	65	125	530	225	280	-	80	-	160	120	-	-	400	280	-	-	M16	-	-	140	42	110	95
100-100-125	100	100	125	500	200	250	-	65	-	125	95	-	-	320	315	-	-	M12	-	-	140	32	80	126
125-100-200	125	100	125	500	200	280	-	80	-	160	120	-	-	360	250	-	-	M16	-	-	140	32	80	159
125-100-250	125	100	140	500	225	280	-	80	-	160	120	-	-	400	280	-	-	M16	-	-	140	32	80	170
125-100-315	125	100	140	530	250	315	-	80	-	160	120	-	-	400	315	-	-	M16	-	-	140	42	110	208
125-100-400	125	100	140	530	280	355	-	100	-	200	150	-	-	500	315	-	-	M20	-	-	140	42	110	151
125-125-160	125	125	125	500	225	315	-	80	-	160	120	-	-	360	400	-	-	M16	-	-	140	32	80	159
150-125-400	150	125	140	530	315	400	-	100	-	200	150	-	-	500	280	-	-	M20	-	-	140	32	80	271
150-150-200	150	150	140	500	265	355	-	80	-	160	120	-	-	400	400	-	-	M16	-	-	140	32	80	131
200-150-315	200	150	160	530	280	400	-	100	-	200	150	-	-	550	315	-	-	M20	-	-	180	42	110	273
200-150-400	200	150	160	530	315	450	-	100	-	200	150	-	-	550	450	-	-	M20	-	-	180	42	110	296
200-150-460	200	150	160	530	335	450	-	100	-	200	150	-	-	550	450	-	-	M20	-	-	180	42	110	330
200-200-310	200	200	160	500	335	450	-	100	-	200	150	-	-	500	450	-	-	M20	-	-	180	32	80	192
200-200-350	200	200	160	530	335	450	-	100	-	200	150	-	-	550	400	-	-	M20	-	-	180	42	110	193
200-200-430	200	200	160	730	335	450	-	100	-	200	150	200	-	550	450	240	180	M20	M24	400	180	65	140	277
200-200-540	200	200	160	730	400	560	-	150	-	250	190	200	-	650	450	240	180	M20	M24	400	180	65	140	309
250-200-410	250	200	180	730	400	560	-	150	-	250	190	200	-	650	500	240	180	M24	M24	400	250	65	140	386
250-200-480	250	200	180	730	400	560	-	150	-	250	190	200	-	650	500	240	180	M24	M24	400	250	65	140	420
250-200-610	250	200	180	730	440	580	-	150	-	300	240	200	-	700	500	240	180	M24	M24	400	250	65	140	477
250-250-360	250	250	180	530	400	560	-	150	-	250	190	-	-	650	550	-	-	M20	-	-	250	42	110	317
250-250-400	250	250	200	730	440	580	-	150	-	300	240	200	-	700	500	240	180	M24	M24	400	250	65	140	432
250-250-450	250	250	200	730	440	580	-	150	-	300	240	200	-	700	550	240	180	M24	M24	400	250	65	140	464
250-250-540	250	250	200	730	440	580	-	150	-	300	240	200	-	700	550	240	180	M24	M24	400	250	65	140	477

Multi-Stage High Pressure Pumps

Application

Water supply systems, pressure boosting, firefighting, boiler feed, irrigation and sprinkler installations, cooling water and hot water circulation, pressurisation in chemical, process and allied industries.

Liquids

Clean or slightly contaminated liquids up to 150 cSt $(500 \text{ mm}^2/\text{S})$ viscosity.

Duty Range

- Capacities up to 500 m³/hr
- Heads up to 30 bar (cast iron) or up to 40 bar (special materials)
- Max. temperature 140°C

Construction

Multi-stage ring section pump of robust construction with extra-large shaft section for vibration-free running. For high output pressures additional axial thrust balancing is provided by a balancing piston mounted on a pump shaft.

All wearing parts are renewable without additional work on the casing parts.

Shaft sealing either with stuffing box packing or mechanical seal. Bearing housing are protected against the lingress of spray water by means of lip seals.

Under difficult suction conditions (low NPSH-available), the pump can be provided with a axial inlet for cavitation-reducing flow entry pattern into the first stage impeller.

Axial Thrust Compensation

In pumps with a small number of stages, the ball bearings (fixed bearings) absorb the axial thrust. In pumps with a larger number of stages, the axial thrust is equalise by means of a balancing piston mounted on the shaft in the area of the delivery housing.

Sectional Drawing

		Parts	List		
ltem	QTY	Part	ltem	QTY	Part
1	1	Suction Casing	12	1	Delivery Diffuser
2	6	Interstage Casing	13	6	Delivery Insert
З	7	Impeller	14	1	Shaft for Mech Seal
4	4	Tie Bar	15	2	Shaft Sleeve for Mech Seal
5	1	Distance Sleeve	16	2	Bearing
6	1	Bearing Cover DE	17	1	Bearing Spacer
7	1	Bearing Cover NDE	18	2	Sleeve Spacer
8	2	Bearing Housing	19	7	Impeller Key
9	1	Diffuser Cover Plate	34	З	Driving & Locating Peg
11	1	Delivery Casing	35	2	V Ring

49125

150 200

300 400

49100

40 50 60 80 120

10

8

20

30

30-

600 [m³/h]

High Head Multi-Stage Pumps

Features

The PL/PJ range of multi-stage centrifugal pumps is designed for a wide range of high head duties at sustained highest efficiency.

The range was developed against a background of many years of practical experience and research; the pumps being particularly suitable for high life mine drainage duties, main line water supply application with formidable total heads to overcome, high pressure boiler feed pumps operating at elevated temperatures, for other general installations requiring substantial generated heads, allied to the well proven reliability and other special features of a heavy duty, ring-section design.

The selection charts on the following page shows the high generated heads achieved, with the stable characteristics offered by PL/PJ range, at the standard direct coupled motor speeds of 1 480r/min and 2 960 r/min obtained from a 50m Hz electrical supply. The pumps are also suitable for operations at other speeds, including those applying when direct coupled to 2 for pole motors fed from a 60Hz electrical supply.

The design further allows for direct drive from power recovery water turbines of the Pelton wheel type and for direct or indirect drive from virtually all other alternative forms of prime mover.

These pumps are of particular robust construction and embody the latest hydraulic design principles. The materials of construction are selected to ensure compatibility of rotating and stationary wearing parts combined with high corrosion and erosion resistance for prolonged life, sustained efficiency, reliability in service and low maintenance cost.

Construction

The sectional view of the typical PL/PJ pump shows the compact design of the unit. The pump is built from a number of stages and the bodies are held together by the main body bolts tying together the suction and delivery end covers which incorporate the main branches.

Each middle body is provided with feet so that the pump can be assembled in the horizontal position. This is advantageous especially underground where the space and working areas are limited. Horizontal assembly is further assisted by clamping bolts fitted between individual bodies to ensure the unit remains tight during the assembly work.

The bearing brackets and bearing bushes are designed with a horizontal split along the centre lone. This gives the advantage of being able to strip the bearing assembly without disturbing the alignment of the element and without having to remove the pump, half coupling or the driving unit. The bearing brackets are supported at the top and bottom, thereby avoiding distortion of bearing bush/shaft alignment when the pump is under pressure. The balance valve cover is not disturbed when the F.E. bearing assembly is removed, thus avoiding the need to remove the gland packing and drain the complete pump. The body bolts are located in clearance holes drilled through the end covers and are fitted with nuts at each end. This avoids deterioration of threaded holes in the covers to receive the bolts. Bolts are spaced to avoid the pump branches and to not interfere with water passageways.

The balance valve assembly is designed to enable the wearing to enable the wearing parts to be replaced at minor cost; therefore, the stainless steel balance valve head will never have to be replaces as it is provided with a separate wear face. The balance valve seat and bush are two separate items which can avoid the need to replace both items at the same time. The impellers are retained on the shaft by an impeller lock-nut which is not disturbed during maintenance work on the balance valve assembly. This prevents inter stage leakage along the shaft developing due to separation of impeller hubs during such balance valve maintenance.

Material Specifications (Standard Pumps)

End overs - Cast Steel Middle Bodies - Cast Steel Shaft - Steel Impellers - Phosphor Bronze Return Channels - Cast Iron Balance Valve Head - Stainless Steel B.V. Face - Phosphor Bronze B.V. Stalk - Phosphor Bronze B.V. Seat - Bearing Bronze B.V. Bush - Bearing Bronze Neck Rings/Bushes - Bearing Bronze Glands - Gun Metal Sleeve Bearings - Bearing Bronze, White Metal Lined

Alternative Specifications

The pumps can also be offered with a wide range of alternative materials to suit special operating condition and customer's preference.

The running surface between the impeller necks and neck ring, impeller hubs and neck bushes, balance valve stalk and balance valve bush can be ceramic coated to reduce the wear and increase the life of these components.

The maximum permissible total axial wear on the balance valve face/seat is 3 to 4 mm and the life of these components can be increased by stellite coating the running surfaces of the balance valve face and the balance valve seat.

Upon request the conventional wear limit indicator can be replaced on the larger units by an electrical operated wear limit warning switch with provision for visual observation.

For the more specialised applications, e.g. boiler feed duties, features such as water cooled stuffing boxes can be incorporated in the design.

High Head Multi-Stage Pumps

r 250 BS	J 250 AS-AN	r 250 H	200	150	100	80	200	. 150	100	80	Model							m			ſ		B ₁ HA	A ₁		-
164	155	155	14 2	126	106	89 6	117	105	90	75	>								Z.	S.						
1265	1191	1350	1115	937	810	70.5	068	799	889	578	œ			*Din				F		a	กิง		θ			-
1455	1341	1387	1275	1034	859	736.5	886	871	882	638	c			nens					' ଜି			2	60		Γ	
821	747	767	661	612	282	450	665	547	465	c 0.2ε	D			ions		U C	2				╼╢╠				_	
36 8	8 25.4	352 7	535 7	555 6	503 5	452 4	555 7	511 5	138 4	349 3	m					ŭ) /	c			┥╠		╢		A	œ
44	05	57	12.5	03	521 2	182	04	49	8	77	т					È	2				╼╢╠		╢╔	τ f		
8	85	6 8	85 8	35 6	24 5	24 3	26 9	24 8	24 4	24 3	ை ர			nete		2				6			:		LГ	7
0 120	0 120	5 16	0 100	0 9C	2 68	2 48	5 12!	8 84	9 78	0 48	-			้				Ħ				•		T		
0 140	0110	16	0 100	90	89 88	8 48	5 12!	. 84	87	8 48	ч							E	╘	s-	7	•)			
85	85	65	D 75	9 70	39	47	5 60	35	40	29	~											F	-			21
85	85	135	75	60	61	46	60	65	60	51	-			ſ		ū		Γ				00		-		
82	82	08	82.5	49	31	9 Е	49	34	50	32	Ν				₽	\searrow	Ū					ų.	,	J		
108	88	95	77.5	48	18	30	49	38	50	28	z		Sha				\ >	•								
445	445	485	396	325	300	230	351	308	260	200	0		ft \	<u> </u>	ᡟ		†≜:		×		6	6				
700 1	700 1	700 1	564 1	520	430	340	570	458	400	300	σ		/ie		1	/	/ _	ł	-	Y	0		9		Ň	-
240	240	260	045	925	780	059	066	811	710	540	ø		2		-			0			1	Ar	R			
540	540	560	481	405	350	290	420	353	310	240	ת					5	7	+			•	•			o	ŢŢ
45 2	45 2	45 2	40 2	30 1	25 1-	25 1-	35 2	35 1.	30 1.	22 1	s					< C		0			1		H			<u> </u>
90 2.	90 2.	99 2:	10 16	70 12	40 11	40 11	10 16	40 11	40 11	8 01		s						1	- i o							
40 14	40 14 14	38	11 11	10 8 8	10 7	0 6,	50 10	10 69	000	0 4 4	31	naft a				<	<	4	~		4			Γ.		
0.061	5.061	125	0.035	5.052 5.037	5.045	4.045 4.032)3.00)2.99	9.800 9.750	3.545 3.532	4.537 4.526	ũ	nd Ke				le w										
127.00 126.70	132.00 131.70	116	100.0 99.8	76.0 76.8	67.50 67.30	56.6 56.4	94.00 93.80	61.00 60.80	56.80 56.00	38.5 38.5	DI	yway D€										<				
40.00	40.00	32	28.00 27.94:	25.00 24.94:	20.00 19.94	20.00 19.94	25.0C 24.95	22.0C 21.95	20.0C	16.000 15.95	E	tails								-			 ວ			
3 300	0 3 250	301	3 200	3 3 150	0 10c	80	200	150	100	80				a) b)	P	P	P	P	P	PI	P	Ρ	P	Pur		
500	430	230	360	290	210	170	400	320	235	180	c			s reco all no 150 Pi 125 Pi	J 250	F 200	J 150	J 100	Ј 80	- 200	L 150	L 100	L 80	s du	Lin	
585	515	530	430	355	265	215	485	390	300	230	<	Suction		omme t be le ercen ercen						0	0	0		ize	ita	
78	68	52	52	44	40	28	82	68	54	36	*	n Flang		ess th t of p t of c	6	6	6	4	6	6	6	6	4	BS 12 Gra Ca:	tion	
42	42	36	36	33	30	22	42	36	33	26	×	e Deta		l that ian th iump losed	200	200	200	600	200	200	200	200	600	152-1 de 2 st Irc	o sr	Р
16	12	16	12	12	8	8	12	12	80	8	No. of holes	S.		the h le gre rated l valve										977 20 20	n t	./РЈ
160/1	160/1	,	1/00/1	100/1	160/1	64/1	250/1	250/1	250/1	1/091	BS 4504			ydros ater c press pres	N	_	_	1		2	2	N	_	BS 3 Gr Carb	est	Ra
250	250	250	200	150	100	80	200	150	100	80	Н			static of the sure sure	2070	9400	3600	0000	905C	25900	23000	200	3000	100- ade on S	pre	nge
430	430	430	360	290	210	170	400	320	235	180	Ē	Delive		test follo	0	0		0	-	0	0	0	0	1976 A2 teel	nss	S
515	515	515	430	355	265	215	485	390	300	230	≤	ry Fla		ving										Stu	re	
68		7	52	42	40	28	8	68	5	36	¥.	ngel		:	17	14	13	10	90	18	16	16	8	S 31 ade	'n	
	68	ŋ		-	0	~	14	~	-			2			6.5	6	A						ത	e ~ ~	~	
42	68 42	6 42	36	33	30	3 22	42	3 36	33	26	×	Details			300	1300	400	000	050	100	100	i100	600	00-19 9 316 (ess St	kPa	

Mather and Platt

NETT GENERATED HEAD IN METERS

NETT GENERATED HEAD IN METERS

High Head Multi-Stage Pumps

CAPACITY IN CUBIC METRES PER HOUR

Friction in PVC Pipes to SABS 966:1969

Friction in Steel Pipes to SABS 62:1970

Friction in Steel Pipes to SABS 62:1970

FLOW IN GALLONS PER MINUTE

HYDRAULIC GRADIENT

Friction in Steel Pipes to SABS 62:1970

HYDRAULIC GRADIENT

FLOW IN GALLONS PER MINUTE

Pump Selection

Factors that must be considered in standard pump installations which involve clear water at normal temperature are familiar to salespersons, technicians and engineers who work with pumping equipment but there are many installations that have an uncommon nature presenting which needs to be considered in more detail. These types of installations should be referred to pump specialists and manufactures.

The pump selection, installation and planning needs to be considered carefully. A trouble free, efficient and longer service creates a better economy. The following factors must be taken into consideration when selecting a pump:

The liquid

If not clear water, then define and consider:

- Liquid type
- Specific gravity
- Viscosity
- Temperature
- Solids content

The installations

Consider:

- The liquid supply and availability
- The required pumping capacity
- The total dynamic head
- The suction conditions
- The prime mover and type of drive

Other factors

- Type of shaft or packed gland
- Pump materials of construction
- Pump rotation speed
- Available net positive suction head
- Required net positive suction head
- Connecting pipe sizes
- Pipe line anchors and flexible connections

- Pipe line valves
- Electric power supply and limitations
- Testing of pumps.

Centrifugal Pump Performance Characteristic Relationships The head-volume performance curve of a pump for a different speed, may be determined from a given speed performance, by applying the following relationships.

If output Q, head H and power absorbed P, are known for given speed N, the q, h, p, corresponding to a new speed n may be calculated from the following equations.

$$\frac{Q}{q} = \frac{N}{n}$$
 therforce, $q = \frac{Qn}{N}$

-

$$\frac{H}{h} = \frac{N^2}{n^2} \text{ therforce, } h = \frac{Hn^2}{N^2}$$

$$\frac{P}{p} = \frac{N^2}{n^2}$$
 therforce, $p = \frac{Pn^2}{N^2}$

Quick calculations can be made on a slide rule, as follows:

- Set n on scale C against n on scale D
- Read off q on scale C opposite Q on scale D
- Read off h on scale B opposite H on scale A

Net Positive Suction Head (NPSH)

Test book definitions whilst strictly correct they can be confusing and difficult to take in and understand fully.

A typical definition of this type is:

 The suction head (Gauge pressure at the suction flange, corrected to the pump centre line, plus velocity head), minus the gauge vapour pressure of the liquid at pumping temperature.

What does this mean in simple terms?

There are two values of NPSH that must be considered:

First - the NPSH that is available at site and

Secondly - the NPSH that is required by the pump if it is to operate in accordance with its performance curves.

Available NPSH

If a centrifugal pump suction is connected via a pipe line to liquid supply, flow into the pump is caused by:

- Creation of low pressure within the pump by the action of the impeller
- Atmospheric pressure on the liquid surface
- The static position of the liquid in relation to the ump (this may be positive or negative)

At the same time, resistance to flow is caused by:

- Friction between to flow is caused by
- Vaporisation of the liquid at low pressure (breaking of the liquid column)

Hence, the available NPSH at a particular site is:

 Atmospheric pressure at site, plus (or minus) the vertical height if the liquid surface above (or below) the pump centre line (horizontal pumps), or pump impeller bottom (vertical pumps), minus friction loss in the suction pipe line, minus the vapour pres sure of the liquid under site conditions of altitude and temperature.

The net result is a total pressure head which is available at site to force the liquid through the suction line into the pump when low pressure is created within the pumps suction.

Required NPSH

This is a design characteristic of the pump and represents the lowest value of the NPSH on which the particular pump will operate without loss of performance.

General Information

Power

Kilowatt kw	Horsepower hp	Pferdestearke ps	Cheval Vapeur cv	Foot Pounds/Sec ft lbs/sec
1	1,340	1,359	1,359	737
0,746	1	1,014	1,014	550
0,736	0,986	1	1	542
0,00136	0,00182	0,00184	0,00184	1

Heat

1 kw h = 341 btu = 1,340 hp hours = 859,6 kcal 1 therm = 100 000 btu = 29,3 kwh = 25 200 kcal

Area

Hectare ha	Sq Metre m ²	Sq Kilometre km²	Sq Feet sq ft	Sq Yard sq yd	Sq Mile sq ml	Acres
1	-	0,01	-	-	-	2,471
-	1	-	10,764	1,196	-	-
100	10 ⁶	1	-	-	0,386	247
-	0,093	-	1	0,111	-	-
-	0,836	-	9	1	-	-
259	-	2,590	-	-	1	640
0,405	4,05x10 ³	0,004	-	-	-	1

Volume

Litre I	Cubic Metre m ³	Cubic Foot cu ft	UK Gallon gall	USA Gallon gall	American Barrel (oil)
1	0,001	0,035	0,220	0,264	0,006
1000	1	35,315	219,97	264,17	6,290
28,317	0,028	1	6,229	7,481	0,178
4,546	0,005	0,161	1	1,201	0,029
3,785	0,004	0,134	0,833	1	0,024
158,99	0,159	1,615	34,973	42	1

Pressure/Head

Metre (Water) m	Feet ft	Inches (Hg) in	Kilopascal kPa	Pound - Force/ Sq cm kg/cm ²	Kilogram/ Sq cm kg/cm ²	Atmosphere	Bar
1	3,281	2,893	9,805	1,422	0,099	0,097	0,098
0,305	1	0,883	2,992	0,434	0,031	0,030	0,030
0,345	1,133	1	3,387	0,491	0,035	0,033	0,034
0,102	0,335	0,295	1	0,145	0,010	0,010	0,010
0,704	2,310	2,036	6,895	1	0,070	0,068	0.069
10,010	32,840	28,960	98,130	14,223	1	0,968	0,981
10,340	33,930	29,920	101,370	14,700	1,033	1	1,013
10,190	33,400	29,500	100,000	14,503	1,019	0,986	1

Capacity/Flow - (Water, 15 C,SG = 1)

Litres/Sec l/s	Gallons/Min gpm (UK)	Gallons/Min gpm (USA)	Cu ft/sec cusec	Cu Metres/Hr m³/h	Mil Gallons/Day mg/d (UK)
1	13,2	15,85	0,035	3,6	0,019
0,076	1	1,2	0,0027	0,0273	0,0014
0,063	0,833	1	0,0022	0,227	0,0012
28,3	374	449	1	102	0,539
0,278	3,67	4,40	0,0098	1	0,0053
52,6	695	834	1,858	189,5	1

Mass

Kilogram kg	Metric Ton	Long Ton	Short Ton	Pound Ib
1	0,001	0,00098	0,0011	2,205
1000	1	0,9842	1,102	2205
1016	1,016	1	1,12	2240
907,2	0,9072	0,8929	1	2000
0,4536	-	-	0,0005	1

Vapour Pressure Chart

Company Details

Local Content

The local content varies from product to product, and is optimized to produce the most cost effective quality solution.customization to suit customer needs makes it possible to augment the standard and product range.

APE Pumps (Pty) Ltd.

Reg No. - 2007/014880/07 VAT No. - 4070243680

Physical Address 26 Nagington Road Wadeville Germiston 1400 South Africa

Postal Address PO Box 14733 Wadeville 1422 South Africa

Mather and Platt

Reg No. - 2008/023117/07 VAT No. - 4760252496

Physical Address 26 Nagington Road Wadeville Germiston 1400 South Africa

PSV Zambia Ltd.

Physical Address Plot 4065 Mulilakwenda Road Industrial Area Kitwe Zambia Telephone Number +27 11 824 4810

Email Address info@apepumps.co.za

Directors P. Agarwal (Managing Director) P. Robinson (Director) K.K. Ganeriwala (Director) H.Nirmal (Director)

Auditors Van Wyk Compton Incorporated Tel No. +27 11 867 6661

Postal Address PO Box 14733 Wadeville 1422 South Africa

Telephone Number +27 11 824 4810

Email Address info@matherandplatt.com

Telephone Number +260 21 221 4137

Email Address psv@zamnet.zm

www.apepumps.co.za 011 824 4810 www.matherandplatt.com